skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schleder, Gabriel R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hematite nanostructures are strong candidates for the development of sustainable water splitting technologies. However, major challenges exist in improving charge density and minimizing charge recombination rates for a competitive photoelectrochemical performance based on hematite without compromising sustainability aspects. Here we develop a synthetic strategy to leverage earth-abundant Al3+ and Zr4+ in a dual-chemical modification to synergistically minimize small polaron effects and interfacial charge recombination. The solution-based method simultaneously induces Al3+ doping of the hematite crystal lattice while Zr4+ forms interfacial excess, creating a single-phased homogeneous nanostructured thin film. The engineered photoanode increased photocurrent from 0.7 mA cm-2 for pristine hematite up to 4.5 mA cm-2 at 1.23 V and beyond 6.0 mA cm-2 when applying an overpotential of 300 mV under simulated sunlight illumination (100 mW cm-2). The results demonstrate the potential of dual-modification design using solution-based processes to enable sustainable energy technologies. 
    more » « less